矩阵的负一次方计算方法(逆矩阵的意义是什么?)

时间:2024-08-23 10:02:37


什么是逆矩阵呢?它的精髓包含在一个公式里,今天我主要带大家理解下面这个公式。大家先瞅瞅它,(看不懂完全没关系。先简单留个印象就行了)。等你看懂了它,你就明白了逆矩阵的意义

式中A是矩阵,A的负1次方表示逆矩阵

好了,让我们开始今天的线代之旅,有请我们的明星矩阵:

我们上次的文章中给大家讲了矩阵乘法的意义。(强烈建议大家先看笔者的前一篇文章,介绍矩阵相乘的本质)这种二维矩阵在空间中可看成是一个以i’(1,3)j’(2,4)基底倾斜坐标系:

大家仔细观察这个图

这个斜坐标的基底不是i和j,它是两个维度复合而成的:

和直角坐标系对应的矩阵是什么呢:

于是,逆矩阵说话了:我逆矩阵可以把这个斜的坐标系变回我们常见的直坐标系:


看到这里,你大概就明白了,逆矩阵为什么叫逆矩阵?因为大部分矩阵可以把直角坐标系变成各种斜的坐标系,而逆矩阵却可以把斜的坐标系变回直角坐标系。

矩阵该矩阵的逆矩阵复合在一起同时操作我们直角坐标系,最终等于没有作用(两个作用相互抵消了):

这个大写I的意思是单位矩阵,这个单位矩阵其实就表示我们的直角坐标系那两个基向量i,j。

现在问题来了:

如何求这四个问号呢?我们直接设a,b,c,d四个未知数不就完了嘛:

挨个对应解得:


这个逆矩阵A^-1张什么样子呢:


类比空间,你是不是很快就想到了:逆矩阵作用就是把斜的三维xyz坐标系变回我们常见的直角三维坐标系。